Non-cell autonomous tumor-growth driving supports sub-clonal heterogeneity
نویسندگان
چکیده
Cancers arise through a process of somatic evolution that can result in substantial sub-clonal heterogeneity within tumors. The mechanisms responsible for the coexistence of distinct subclones and the biological consequences of this coexistence remain poorly understood. Here we used a mouse xenograft model to investigate the impact of sub-clonal heterogeneity on tumor phenotypes and the competitive expansion of individual clones. We found that tumor growth can be driven by a minor cell subpopulation, which enhances the proliferation of all cells within a tumor by overcoming environmental constraints and yet can be outcompeted by faster proliferating competitors, resulting in tumor collapse. We then developed a mathematical modeling framework to identify the rules underlying the generation of intratumor clonal heterogeneity. We found that non-cell autonomous driving, together with clonal interference, stabilizes sub-clonal heterogeneity, thereby enabling inter-clonal interactions that can lead to new phenotypic traits.
منابع مشابه
An Evolutionary Model of Tumor Cell Kinetics and the Emergence of Molecular Heterogeneity Driving Gompertzian Growth
We describe a cell-molecular based evolutionary mathematical model of tumor development driven by a stochastic Moran birth-death process. The cells in the tumor carry molecular information in the form of a numerical genome which we represent as a four-digit binary string used to differentiate cells into 16 molecular types. The binary string is able to undergo stochastic point mutations that are...
متن کاملCell plasticity and heterogeneity in cancer.
BACKGROUND Heterogeneity within a given cancer arises from diverse cell types recruited to the tumor and from genetic and/or epigenetic differences amongst the cancer cells themselves. These factors conspire to create a disease with various phenotypes. There are 2 established models of cancer development and progression to metastatic disease. These are the clonal evolution and cancer stem cell ...
متن کاملTumor heterogeneity and resistance to EGFR-targeted therapy in advanced nonsmall cell lung cancer: challenges and perspectives
Lung cancer, mostly nonsmall cell lung cancer, continues to be the leading cause of cancer-related death worldwide. With the development of tyrosine kinase inhibitors that selectively target lung cancer-related epidermal growth factor receptor mutations, management of advanced nonsmall cell lung cancer has been greatly transformed. Improvements in progression-free survival and life quality of t...
متن کاملMeasurement of Cancer Cell Growth Heterogeneity through Lentiviral Barcoding Identifies Clonal Dominance as a Characteristic of In Vivo Tumor Engraftment
Advances in the fields of cancer initiating cells and high-throughput in vivo shRNA screens have highlighted a need to observe the growth of tumor cells in cancer models at the clonal level. While in vivo cancer cell growth heterogeneity in xenografts has been described, it has yet to be measured. Here, we tested an approach to quantify the clonal growth heterogeneity of cancer cells in subcuta...
متن کاملEvolution of tumor cell heterogeneity during progressive growth of individual lung metastases.
The metastatic properties of tumor cell clones isolated from individual lesions of B16 melanoma metastatic to lung have been examined at different stages in the evolution of metastasis. Clonal analysis of metastatic lesions produced by B16 melanoma populations containing clones with identifiable, stable drug-resistance markers revealed that the majority (greater than 80%) of experimental metast...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 514 شماره
صفحات -
تاریخ انتشار 2014